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T R A N S I E N T  R A D I A T I V E - C O N D U C T I V E  H E A T  T R A N S F E R  IN A FLAT L A Y E R  

OF A S E L E C T I V E L Y  A B S O R B I N G  AND R A D I A T I N G  M E D I U M  

A. L. B urka UDC 536.244 

Results of a numerical solution of the unsteady boundary-value problem of radiative-conductive 
heat transfer in a flat layer of a selective non.scattering medium with semitransparent mirror- 
reflecting boundaries are presented. This problem reduces to a nonlinear integral equation in the 
unknown temperature with the use of a Green function. The optical properties of the walls are 
shown to have a strong effect on the formation of a temperature field in the layer. The intensity 
of heating of the layer depends on the radiative fluxes to a greater extent than on the conductive 
fluxes. 

The problem of joint heat transfer by heat conduction and radiation in various materials is associated 
with important engineering applications (heat transfer in fibrous insulators, heating and cooling of glasses, 
etc.). In view of this, a study of the contribution of radiation in the total heat transfer as applied to various 
physical and engineering problems is of keen practical interest. 

The author analyzed [1] the unsteady selective problem of rMiative-conductive heat transfer (RCHT) 
in a layer with semi-transparent boundaries, taking into account the temperature dependence of the absorption 
coefficient. The selective character of the radiation is taken into consideration either by the method of stepwise 
approximation of real absorption spectra [2, 3] or by averaging the absorption coefficient over the frequency 
[4, 5]. The need to perform a reasonable averaging of the volume absorption coefficient arises because of 
difficulties of a computational character that are connected with determination of the integral hemispherical 
density of'the radiative flux. 

Below, we formulate the RCHT problem of a semitransparent selectively absorbing and radiating 
medium that is separated by two mirror-reflecting parallel planes and we consider the method of solving this 
problem. The numerical algorithm for solving the problem assumes making allowance for the temperature 
dependence of the thermal and radiation characteristics of the medium. The mathematical formulation of the 
problem describes processes of heat transfer caused by heat conduction and radiation in the form of unsteady 
energy and transfer equations. 

The energy equation with boundary conditions is written as follows: 

OT 0 [A(T ) OT] O E 
p(T)c(T) O---[ - Ox -~z Ox' 0 < x < L ,  t > 0 ;  (1) 

or f ) ~ z = a a ( T - T , ) -  e ,v[Qx(u,T;)-E, , l (u,T)]du,  x = 0 ;  (2) 
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(4) T(z,O) =To(x). 
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TI and 7"2 are the temperatures  of the ambient medium, Q1 and Q2 are the external radiative fluxes, T{ and 
T 2" are the temperatures  of the external emitters, Evi, eiv, and fti are the densities of the fluxes of intrinsic 
radiation, degrees of emissivity, and spectral zones of nontransparency of the boundary surfaces, respectively. 

The heat-transfer equations with boundary conditions are as follows: 

az~+ 
~ + k~U = k~/p~(~); (5) 

d I ;  
~ - k,,I 7 = -k,,Ip,,(x); (6) 

z+(0,u) = n~[1 - R0v(/~)]I,~,(T) + R0~(/z)I7(0, /~) ;  (7) 

n, [1  - R,,,(I~)II,.,(T) + n l , ( / ~ ) I + ( 1 , / J ) .  (S) /~"(1, #) = 2 

Here x and ku are the dimensionless coordinate and the volume absorption coefficient, n~ is the refractive 
index, and Ri~ are the reflection coefficients for the surface boundaries (i = 1 and 2). 

0 

After the new variable u(x, t) = [ A(z)dz is introduced, the boundary-value problem (1)-(4) takes the 
0 

fo rm 

02u 
Ox-.--- ~ - u = F ( q , x , t ) ,  0 < x < l ,  t > 0 ;  (9) 

Ou 
- - = q l ,  x = 0 ;  (10) 
0 z  
Ou 
O~ = as, x = 1. (11) 

The formal solution of the boundary-value problem (9)-(11) with the use of the Green function for the 
differential operator on the left-hand side of Eq. (9) is as follows: 

where 
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/ A(z) dz = [q2(0)cosh (x) - q l (0)cosh  (1 - z ) l / s i n h  (1) + / FCO, z,t)rcz, z)dz, 
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] k~[4,~Ip,,(o) - G(~)] d~,; F(O,z,t) = aoT3, GR(x) + R(O) Oi - f A(z)dz; OR(x) = 
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ql(0) = a l L ( O  - 01) - -  aoTa, L f eul[~l.(u, 0~) -- ~lv(U, 0)] dv (x -- 0); 
fll 

q2(0) = a2L(02 - 0) - aoT3, L f e~2[~2(u, 0~) - r 0)] du (x = 1); 
12 2 

r = Qi(u,O~)/(~roT:); r  = E~i(u,O)/(aoT?); 

Evi = 2rhvan2(exp (hv/T.Oi) - 1)-1/c02; 

R(O) = pcn2; O(z,t) = T(z,t)/T,; Oi = Ti/T, (i = 1,2). 

The Green function F(z ,z)  by means of which the boundary-value problem (9)-(11) was reduced to 
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the nonlinear integral equation (12) in the unknown temperature O(x, t) is written as 

F(x,z)  = { - cosh (x )cosh(1  - z)/sinh(1),  x ~< z, 
-cosh  (1 - x) cosh (z)/sinh (1), z t> z. 

The divergence of the radiative flux dE,,/dz is expressed via the radiation intensities I + and I~-, which 
are determined from the solution of the boundaxy-value problem for the transfer equation obtained by the 
method of variation of an arbitrary constant and have the form 

Z 

P o 

1 

/ k,,(y)/p,,(y) 
= + T 

Y ;g 

exp 1 1 k~,(z) dz) ; 
0 o 

1 l 

y z 

Explicit expressions for the boundary intensities are derived from the solution of a system of two 
algebraic equation in I+(0, ~t) and I~(1, IJ) with the use of relations (7), (8), (13), and (14). Substituting the 
expressions for I+(0, g) and I~-(1, #) into (13) and (14), we obtain the final expressions for the intensities. 
These expressions are used in determining the divergence of the radiative flux dE,,/dz, whose integral spectral 
value is substituted into the energy equation (1). 

Thus, the RCI-IT problem (1)-(8) in a flat layer of a selectively absorbing and radiating medium reduces 
to tim solution of the nonlinear integral equation (12) in the desired dimensionless temperature O(z, t). The 
method of solving Eq. (12) offers the possibility of using Newton-Kantorovich-type iteration processes and 
deriving a solution of the problem with any degree of accuracy. 

A program of numerical solution of the unsteady energy equation in a heat-conducting, radiating, and 
absorbing medium was prepared on the basis of the developed algorithm. At each time step, the integral 
equation (12) was solved by the Newton-Kantorovich method [6]. 

The integrals in (12)-(14) were calculated by Gauss quadrature formulas with 20 nodes. The derivative 
80~Or was approximated by a finite-difference ratio. For each moment of time, the temperature profile and the 
flux density of the total radiation were calculated. Results of the numerical solution of the integral equation 
(12) are given in Figs. 1-6. Calculations were performed for the following thermophysical and optical data 
in conformity with Plexiglas of thickness L = 0.024 m: A = 0.189 W / ( m .  K), To = 300 K, T. = 1600 K, 
T i' = 1000 K, T~ = 1000 K, n = 1.6, and a = 9 m2/sec (A is the thermal conductivity, n is the refractive 
index, and a is the diffusiviW). The spectral coefficient of volume absorption at T = 300 K was calculated on 
the basis of the experimentally measured transmission spectrum of SO-120 Plexiglas [7]. 

Figures 1-5 show the distribution of the dimensionless temperature across a glass layer at various 
moments of time. Here Bil, Bi2, r l ,  and r2 axe the dimensionless coefficients of convective heat transfer and 
the reflection coefficients, respectively. 

The dynamics of layer heating is shown in Fig. 1, where the layer surface z = 0 is maintained at 
constant temperature (01 = 0.38 and Bil = oo) and the layer surface z = 1 undergoes radiative-convective 
heating (q2 # 0 and Bi~ = 5.6). Here the dashed curves correspond to r:  = 1 and r2 = 1, and the solid curves 
refer to rl = 1 and r2 = 0.5. Figure 2 shows the temperature distribution in the layer where the surface 
z = 0 is heated owing to convection alone (Bil = 5.6). The conditions on the surface z = 1 are similar to 
those in Fig. 1. Figure 3 characterizes a heating process during which both surfaces of the layer are heated 
by radiative-convective fluxes (ql # 0 and q2 • 0) .  Figure 4 shows how the temperature level in the layer 
increases markedly as the capacity for reflection of the layer surfaces decreases slightly. The dashed curves in 
Fig. 3 refer to r: = r2 = 1, and the solid curves refer to rl = 1 and v2 = 0.5. In Fig. 4, the dashed curves 
refer to rl = 1 and r2  ---- 0 . 8 ,  and. the solid curves refer to rl = 0.8 and r2 = 0.5. 

The effect of the incident radiative flux on the temperature distribution in the glass layer for both 
surfaces is illustrated in Fig. 5 (Bil = 0.56 and Bi2 = 0 for rl = 0.8 and r2  ---- 1; the solid curves refer to 
q: = 13.6 and q2 = 0, and the dashed curves refer to ql = 3.8 and q2 --= 0) .  
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The distribution of the radiative flux in the glass layer is shown in Fig. 6 for conditions similar to the 
previous case (Fig. 5). 

In concluding, it is worth noting that the optical properties of the walls exert a significant effect on 
the t%rmation of the temperature field in the Plexiglas layer. The intensity of heating of the layer depends on 
the incident radiative fluxes to a greater extent than on the convective fluxes. 

This work was supported by the Russian Foundation for Fundamental Research (Grant No. 97-02- 
18558). 
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